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Abstract. We describe the electonic structure of Gd within the local spin density functional 
approximation treating the 4f electrons on equal footing with the s ,  p, d valence electrons. 
This band model is solved with the LMTO-ASA method, which includes the spin-orbit coupling 
and spin polarisation. The model gives a reasonable description of electronic structure 
properties suchas the spinmagneticmoment and theFermisurface. Total energycalculations 
indicate that the experimentally observed HCP structure is favoured over both FCC and DHCP 
structures. Freezing the 5p semi-core states overestimates the lattice constant by 3.9%, while 
relaxing them as band states gives an underestimation of 3.4%, indicating a strong sensitivity 
to the treatment of these states. 

1. Introduction 

The local spin density functional approximation (LSD) provides an extremely successful 
and unified framework for describing the electronic properties of solids. In the rare earth 
metals, however, some doubt exists as to whether their properties can be described 
within the LSD. At issue is whether the electronic structure of such highly correlated f- 
electron systems can be based on a model where the exchange and correlation is derived 
from the exchange and correlation of a homogeneous electron gas. Furthermore, the 
subject is confused by the fact that the LSD should only be used to describe ground state 
properties, like lattice constants and magnetic moments, while the effects of the f -  
electron correlation are most apparent in excited state properties, such as photoemission 
and inverse photoemission spectra. Those controversies also arose, but to a lesser 
degree, in the electronic structure of transition metals. However, for the transition 
metals the argument was settled by the numerous band calculations which gave excellent 
agreement with a variety of experiments. Unfortunately progress in the electronic 
structure of rare earth metals has been hampered by technical difficulties in performing 
accurate self-consistent field calculations, making the exact status of the LSD with respect 
to the rare earth metals not as clear cut. The first self-consistent field (SCF) calculation 
for Gd was performed by Harmon (1979). Since then only three other calculations have 
been performed: Sticht and Kubler (1985), Krutzen and Springelkamp (1989) and the 
present work (1989). 

t Present address: Division of Chemistry and Materials Science (L-280), Lawrence Livermore National 
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It is argued by Skriver (1982) that in the presence of localised states band theory will 
give toosmallalattice constant, i.e. it willoverestimate the bonding. Our study therefore 
focuses on the contribution of the 4f and also 5p bonding in the determination of the 
lattice constant of Gd. We will also discuss how accurately the band model is solved. 
This is crucial to know in relation to the various schemes to improve on the LSD, such 
as the self-mteraction correction (SIC) (Perdew and Zunger 1981) and the gradient 
corrections (Langreth and Mehll983). 

In this paper we will compare our LSD calculations for Gd with both the ground state 
properties and the electronic energy bands as derived from the de Haas-van Alphen 
measurements (Mattocks and Young 1977, Young 1979). Traditionally, the electronic 
structure of rare earth metals has been described by two contrasting methods depending 
on which properties one is interested in (Gschneider and Eyring 1978). A band model 
with s, p, d electrons and the f electrons frozen in the core is used to describe the de 
Haas-Van Alphen measurements, the transport properties, the crystal structures etc, 
while a crystal field model, where the f electrons play a central role but that completely 
neglects the valence s,  p, d electrons, describes the magnetic properties. However 
neither model on its own can explain all the electronic properties. The purpose of our 
paper is to investigate whether the LSD is capable of doing this. We therefore discuss the 
Fermi surface and the lattice constant and investigate the f contributions to it. We also 
calculate the spin magnetic moment and study the contributions due to the conduction 
electron polarisation. 

The organisation of this paper is as follows. The next section discusses the band 
model and our technique for solving this model. In section 3 we give the energy bands, 
the density of states and the Fermi surface. Section 4 analyses the bonding properties 
and section 5 studies the role of the 5p semi-core states in the bonding. Section 6 discusses 
and summarises our findings. 

2. The band model and the electronic structure method 

We use the linear muffin tin orbital (LMTO) method in the atomic sphere approximation 
(ASA) (Andersen 1975, 1984, Skriver 1984) to solve the LSD equations (von Barth and 
Hedin 1972). This method has been used with great success to describe the electronic 
structure of elemental solids and complicated systems (Andersen et a1 1985). It is a fast 
band structure method at the expense of only a small loss in accuracy. The ASA replaces 
the Wigner-Seitz polyhedra of the solid by overlapping Wigner-Seitz spheres. This 
approximation is most accurate for close-packed elemental metals. The band structure 
method is a basis set method with only one basis function per angular momentum. To 
treat the electronic structure in the energy range of both the semi-core 5p and the 
conduction 6p orbitrals we use two energy panels with a different set of basis functions 
for each panel. 

An electronic structure study of Gd has to take into account the relativistic effects in 
the presence of spin polarisation. Band theorists have recently become interested in the 
interplay of relativistic effects with spin ordering. All total energy calculations up to now 
have been performed using a perturbational approach which includes the L . S coupling 
in the Hamiltonian but not in the basis functions (Brooks and Kelly 1983, Sticht and 
Kubler 1985). However, band theory has been generalised to treat spin polarisation and 
all relativistic effects on equal footing by Feder et a f  (1983) and Strange et a1 (1984) in 
the case of KKR band method; by Ebert (1988) for the LMTO-ASA method; by Krutzen 
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Figure 1. The total density ofstatesof Gd ( a ) ,  decomposed into the majority spincontribution 
( b ) ,  and the minority spin contribution (c). The inset is the integrated density of states of the 
occupied bands. In this calculation the 5p states were kept in the frozen core and spin-orbit 
coupling was included (HCP-PF-SO case of table 1). 

and Springelkamp (1989) for the ASW and by Richter and Eschring (1989) for the LCAO 
formalism. Our calculations use the variational approach (Sticht and Kubler 1985) with 
the LMTO-ASA band structure scheme. We argue from the results of our calculation that 
the spin-orbit splitting in Gd is much smaller than the spin splitting, validating aposteriori 
our approach. 

We performed LMTO-ASA calculations for a spin-polarised scalar-relativistic Ham- 
iltonian with the spin-orbit coupling included variationally using the Koelling and 
Harmon (1977) form. We used the von Barth-Hedin form for the local exchange and 
correlation and treated the 4f electrons of Gd as valence states. During the calculations 
we iterate the 4f, 6s, 6p and 5d contributions to the charge density to self-consistency. 
All the other orbitals, obtained from a relativistic atomic calculation, are kept frozen 
during this iteration process. The Brillouin zone integrations were carried out using 
the tetrahedron method. In contrast to earlier LMTO calculations (Skriver 1982) these 
integrals were carried out analytically, avoiding the need for a numerical integration 
over a fine energy mesh. We also calculated the charge density directly, from the wave 
function coefficients, rather than using the more common and less accurate moment 
expansion (Skriver 1982). These technical improvements (Temmerman et a1 1989) led 
to a dramatic improvement in the rate and stability of convergence, so stability in the 
converged total energy of better than 1 pRyd is readily obtainable. 

We use a value of 3.764 au for the experimental Wigner-Seitz radius (Skriver 1984) 
and in all the calculations we use the experimental c/a ratio, which is 2.57% smaller than 
the ideal HCP c/a ratio. The Brillouin zone integrals were performed with the linear 
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Figure 2. The influence of relaxing the 5p semi-core states on the s + p + d density states; 
(a),  (b)  majority spin contributions for respectively the 5p frozen in the semi-core (HCP-PF- 
SO case of table 1) and the 5p treated as band states (HCP--PR-SO case of table 1); (c), (d)  
minority spin contributions for respectively HCP-PF-SO and HCP-PR-SO. 

tetrahedron method using 112 k-points in the irreducible HCP Brillouin zone. Finally, all 
the calculations were performed without combined correction term. 

3. Electronic structure of Gd 

In the first four figures we present our results for the density of states, energy bands and 
Fermi surface of Gd at the experimental lattice constant. The calculations include the 
spin-orbit splitting and are for a frozen core which include the 5p core levels. In figure 
1 the total density of states is projected onto the spin up and spin down states. The 
density of states is dominated by the majority and minority f states. The LSD calculation 
clearly indicates that the atomic-like f electrons obey Hund’s rules, occupying the first 
seven states with parallel spin. The majority ones, from 3.7 eV to 4.4 eV below E,, are 
split up in seven narrow sub-peaks, through the combined effect of the crystal field, 
spin-orbit and exchange splitting. The minority f states are broader, extending from just 
above the Fermi energy to more than 1 eV above it. The integrated density of states 
(inset to figure 1) increases in steps of one electron when the energy moves through the 
majority f states. In figure 2 we show the s + p + d contribution to the density of states 
decomposed according to spin. The occupied majority and minority states are more or 
less rigidly shifted by 0.8 eV with respect to each other, giving rise to a ‘conduction’ 
electron contribution of 0.678 pB to the total magnetic moment of 7.548 pB. The density 
of states at EP is dominated by the s + p + d electrons: n(EF) = 25.326 states Ryd-’/ 
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Figure 3. The effects of the spin-orbit coupling on the band structure in some high symmetry 
directions of the HCP Brillouin zone: (a )  no spin-orbit coupling (case HCP-PF of table I ) ,  ( b )  
with spin-orbit coupling (case HCP-PF-SO of table 1). 

atom of which the f contribution is small (5.815 states Ryd-’/atom). Neglecting the 
spin-orbit coupling (figure 3) reduces the majority f band width from 0.7 eV to 0.2 eV, 
without, however, affecting the centroid position of the f levels. 

The difference between the number of electrons in the majority and minority bands 
determines the spin contributions to the magnetic moment. We obtain a value of 
7.548 pB, in excellent agreement with the experimental value of 7.63 pB (Roeland et a1 
1975). Krutzen and Springelkamp obtain 7.55 pB, identical to our moment for the same 
exchange and correlation potential. However, the conduction electron contribution 
(spd electrons only) to our moment is 0.678 pB, which is slightly smaller than Krutzen 
and Springelkamp’s value of 0.736 pB. The density of states at EF of our calculation is 
low: 25.326 states Ryd-’/atom in good agreement with the values deduced from the low 
temperature specific heat (21.35) (Wells et a1 1974) and substantially smaller than the 
value of 46.74 from Sticht and Kubler and 36.72 from Krutzen and Springelkamp. Our 
value is small because we have the unoccupied f electrons well separated from EF: 0.3 eV 
above EF in comparison with 0.1 eV in the calculations of Sticht and Kubler and Krutzen 
and Springelkamp. 

There are three basicFermisurface sheets in Gd: two majority, hole carriers, surfaces 
and a minority, electron carrier, surface (Mattocks and Young 1977). We identify bands 
20 and 21 in figure 4 as the hole surfaces, predominantly of majority character, and band 
22 as the electrons surface, mostly of minority character. We superimpose on our Fermi 
surface the Fermi surface deduced by Mattocks and Young from de Haas-Van Alphen 
measurements. We note the very good agreement of the ‘majority surfaces’ between 
Mattocks and Young’s model and our calculation. Concerning the minority surface there 
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Figure 4. The calculated and experimental (full line) Fermi Surface (Mattocks and Young) 
of Gd; (a) refers to the case HCP-PF-SO, ( b )  to HCP-PR-SO. The various sheets are identified 
by the band indices 20,21 and 22. 

are some topological differences, but we agree with Mattocks and Young’s value of the 
exchange splitting of 0.8 eV between minority and majority bands. However, Mattocks 
and Young find several low frequencies which could not be identified on the above three 
surfaces, indicating that the minority Fermi surface may be more complicated. Our 
results show that such small pieces of Fermi surface are present, for example around the 
K point. This minority surface is very sensitive to the position of the unoccupied f levels 
as will be discussed in section 5 .  

4. Bonding and crystal structure 

We obtain a theoretical lattice constant that is 3.9% too big (figure 5) .  This is very 
different from the result of Sticht and Kubler, who obtain a lattice constant that is 
2.5% too small. Our theoretical bulk modulus is 47.4 GPa, an overestimation of the 
experimental value of 41 GPa and 39 GPa as obtained by Sticht and Kubler. The reason 
for the difference of more than 6% between Sticht and Kubler’s calculation and ours is 
related to the position of the minority f with respect to EF. In Sticht and Kubler’s 
calculation the minority f are closer to EF: 0.1 eV above EF; in ours, 0.3 eV. This will 
give rise to more f bonding, resulting in a smaller lattice constant. 

Neglecting the spin-orbit coupling does not change the theoretical lattice constant 
as can be seen from figure 5. On the basis of this result, we studied the theoretical crystal 
structure by performing self-consistent calculations without the spin-orbit splitting. We 
calculated the total energies of FCC Gd (as three interpenetrating HCP structures) and 
DHCP Gd (four atoms per unit cell) using the same density of k-points in the irreducible 
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Table 1. The total energy (Ryd/atom) (E,) at the experimental lattice constant, the band 
contribution (EB), the Coulomb (Ec)  and the exchange and correlation contribution (Exc) 
for the HCP. DHCP, FCC structures with either the 5p levels frozen (PF) or 5p relaxed as band 
states (PR) and with the spin-orbit included (SO) in the first and last columns only. A 
decomposition according to angular momentum and spin of the total number of valence 
electrons per atom (N) is given. The total spin magnetic moment is decomposed into the f 
and s + p + d contributions. The total density of states per atom and rydberg and its f 
contribution are given in the last two lines. 

HCP-PF-SO HCP-PF DHCP-PF FCC-PF HCP-PR-SO 

-75.5988 
-3.9480 

-28.1990 
-43.4518 

0.399 
0.382 
0.781 
0.340 
0.166 
0.506 
1.048 
0.560 

1.608 
6.987 
0.117 
7.104 

7.548 
6.870 
0.678 

25.326 
5.814 

-75.5876 
- 3.9856 
- 28.2040 
- 43.3980 

0.399 
0.382 
0.781 
0.344 
0.163 
0.507 
1.067 
0.552 

1.619 
7.015 
0.078 
7.093 

7.650 
6.937 
0.713 

22.233 
4.566 

-75 3 7 2  
-3.9356 

-28.2044 
- 43.4472 

0.396 
0.387 
0.783 
0.308 
0.174 
0.482 
0.998 
0.632 

1.630 
7.011 
0.093 
7.104 

7.428 
6.918 
0.510 

26.069 
6.152 

-75.5854 
-3.9146 

-28.2069 
-43.4639 

0.394 
0.386 
0.780 
0.305 
0.166 
0.471 
1.007 
0.636 

1.643 
7.011 
0.096 
7.107 

7.433 
6.915 
0.518 

28.900 
4.759 

-76.3609 
-4.1227 

-28.3539 
-43.8843 

0.397 
0.380 
0.777 
0.320 
0.165 
0.485 
1.011 
0.571 

1.582 
6.986 
0.170 
7.156 

7.426 
6.816 
0.610 

35.124 
12.000 

Brillouin zone wedge. Our results are summarised in table 1 and figure 5 .  We obtain the 
HCP structure as the theoretical ground state structure in comparison with the DHCP and 
FCC structures. The energy is lowered by respectively 0.92 and 3.06 mRyd. The lattice 
constant in these three structures is approximately 4% too big. From the total energy 
( E T )  decomposition, at the experimental lattice constant, into the band structure ( E B ) ,  
an electrostatic term (E,) and exchange and correlation (Exc) :  

ET = EB + Ec + EXc 

we see that the band structure term is 50 mRyd lower in the HCP structure than in the 
DHCP one, and 71 mRyd lower than in the FCC one. The electrostatic terms on the other 
hand favour FCC over DHCP over HCP. We obtain 1.6 d electrons in all the structures and 
this is consistent with the HCP crystal structure according to Duthie and Pettifor (1977). 

5. The 5p semi-core states 

The 5p levels do not really behave as true core states. Even though their binding energy 
is more than 10 eV below the bottom of the valence bands, the 5p shell is spatially outside 
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Figure 5. The total energies as a function of deviation of the experimental Wigner-Seitz 
radius for Gd in the FCC, DHCP. HCP and HCP with spin-orbit included. The decomposition of 
these total energies at the experimental Wigner-Seitz radius is given in table 1 in the columns 
FCC-PF. DHCP-PF, HCP-PF and HCP-PF-SO respectively. 
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Figure 6. The semi-core and valence band structure of Gd corresponding to the column HCP- 
PR-SO of table 1. 
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the 4f shell. We therefore performed self-consistent field calculations with the 5p states 
treated as band states through the use of panels. Our resulting band structure is shown 
in figure 6. This shows that the 5p states do indeed have some dispersion. The unoccupied 
f states are lowered by 0.1 eV, the occupied ones by 0.2 eV. The density of states at the 
Fermi energy increasesfrom25.326 states Ryd-’/atom to 35.124, with the f contribution 
increasing from 5.814 to 12.0 (table 1). The f contribution to the spin moment is reduced 
from 6.870 to 6.816, which reduces the conduction electron contribution from 0.678 to 
0.610. 

The effect of lowering of the f bands on the conduction bands on the conduction 
bands is studied in figures 2(6) and 4(6). The exchange splitting is reduced from 0.8 eV 
to 0.7 eV. The Fermi energy went up (figure 2(6)), so the hole Fermi surfaces (figure 
4(b)) have increased. Bringing the minority f levels closer to EF has changed the topology 
of the Fermi surface due to band 22. For example band 22 does not cross the TM direction 
any more. Unfortunately, current fermiology results (Mattocks and Young 1977, 
Hoffmann et a1 1982, Waspe and West 1982) do not distinguish between 4(a) and 4(6). 

But, most dramatically, including the 5p as band states out of the frozen core has 
reduced the lattice constant from +3.9% to -3.4%, by more than 7%!! 

6. Discussion and conclusion 

The position of the minority f levels crucially affects the lattice constant. Relaxing the 
semi-core 5p states changes the lattice constant by 7% by lowering the 4f levels by as 
little as 0.1 eV. The reduction of the lattice constant by 7% is not solely due to the 
lowering of the minority f levels. In the case of Y relaxing the 5p semi core levels reduces 
the lattice constant by 2% (table 2). As can be seen from this table there are substantial 
reductions in lattice constant on relaxing the p semi-core states of the early transition 
metals. On the other hand KKR calculations for Y (Guo et a1 1989, 1990) find that the 
lattice constant increases by 3% from -6% to -3% on relaxing the p semi-core states; 
this lattice constant of -3% compares well with a lattice constant of -2.6% from the 

The big discrepancy between Sticht and Kubler’s lattice constant of -2.5% and ours 
of 3.9% becomes a reasonable agreement when we compare our lattice constant with 
relaxed 5p states of -3.4% with Sticht and Kubler’s result of -2.5%. Moreover, we 
found that it was not important to treat the 5p states as band states, as an all electron 
calculation with the 5p relaxed as core states gave us a similar lattice constant of -3.4%. 

LMTO-ASA. 

Table 2. The theoretical lattice constants for some of the early transition metals in the 3d, 4d 
and 5d rows with the p semi-core either frozen or relaxed as band states. 

Ca s c  Ti V 
-3.51 -1.77 -1.37 - 1.6 3p frozen 
-4.67 -2.90 -2.64 -2.96 

Y Zr Nb 
-0.87 -0.19 0.2 4pfrozen 

La Hf Ta 
+3.3 -0.19 0.0 5pfrozen 

-2.64 -1.61 - 1.44 

-2.34 -0.60 -0.99 
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Finally we note that Sticht and Kubler’s result also refers to an all electron calculation. 
From all this we can conclude that the 5p semi-core states play a crucial role in deter- 
mining the lattice constant of Gd-the LSD resulting in over-estimating the 5p bonding. 
More work is now needed to establish what improvements to LSD, such as SIC, are needed 
to localise the 5p states sufficiently to obtain a better agreement in theoretical lattice 
constants. 

We conclude that for the soft rare earth metals with their very localised states, the 
evaluation of the theoretical lattice constant is an extremely sensitive test of the LSD. 
But surprisingly we have to turn our attention to an improved LSD treatment of the 5p 
states in Gd. An experimental determination of the Fermi surface of band 22 would 
give us a quantity that would be another crucial test for a calculation. Finally we can 
summarise by saying that LSD can be used to provide this unified description of both 
localised and band-like features in elemental Gd. 
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